Three-dimensional, millimeter-scale semiconducting SWCNT aerogels for highly sensitive ozone detection

J Hazard Mater. 2020 Jul 15:394:122516. doi: 10.1016/j.jhazmat.2020.122516. Epub 2020 Mar 18.

Abstract

Semiconducting frameworks possessing porous structure are promising platforms for the detection of hazardous gas molecules. In this study, we propose a facile route to fabricate millimeter-scale, three-dimensional semiconducting SWCNT (s-SWCNT) aerogels and demonstrate deactivation of the co-existing metallic SWCNT (m-SWCNT) network via electrical breakdown process. In particular, the on-off ratio of the modulated semiconducting aerogel after the electrical breakdown process was 205, which is an increase of 18.9 times over that before the process. The modulated semiconducting SWCNT aerogels with a large specific surface area (∼1270 m2 g-1) demonstrated their applicability for highly sensitive ppb-level ozone detection. The modulated semiconducting networks led to a 1310 % increase in the magnitude of response to 30-ppb ozone gas injection compared with that of pristine SWCNT aerogels. Furthermore, the prepared aerogels could detect 3 ppb of ozone within 40 s and retain stable reversible ozone detection for 200 cyclic operations over 100 h. Thus, the proposed semiconducting SWCNT aerogels are a promising candidate for highly sensitive environmental gas sensors.

Keywords: Electrical breakdown; Gas sensor; Ozone; Semiconducting aerogel; Single-walled carbon nanotube.

Publication types

  • Research Support, Non-U.S. Gov't