Recent Advances in Diagnostic Approaches for Epstein-Barr Virus

Pathogens. 2020 Mar 18;9(3):226. doi: 10.3390/pathogens9030226.

Abstract

Epstein-Barr virus (EBV) is the causative agent of many diseases including infectious mononucleosis (IM), and it is associated with different subtypes of lymphoma, sarcoma and carcinoma such as Hodgkin's lymphoma, non-Hodgkin's lymphoma, nasopharyngeal carcinoma, and gastric carcinoma. With the advent of improved laboratory tests for EBV, a timelier and accurate diagnosis could be made to aid better prognosis and effective treatment. For histopathological lesions, the in situ hybridization (ISH) of EBV-encoded RNA (EBER) in biopsy tissues remains the gold standard for detecting EBV. Methods such as the heterophile antibody test, immunofluorescence assays, enzyme immunoassays, Western blot, and polymerase chain reaction (PCR) are also employed in the detection of EBV in different types of samples. The determination of EBV viral load using PCR, however, is gaining more prominence in the diagnosis of EBV-associated diseases. Given the challenge of false positive/negative results that are sometimes experienced during the detection of EBV, variability in results from different laboratories, and the impact of factors such as sample type and the immunological status of patients from whom samples are collected, the need to critically examine these present methods is invaluable. This review thus presents current advances in the detection of EBV, detailing the advantages and disadvantages of the various techniques. In addition, fundamental virological concepts are highlighted to enhance the greater understanding, the proper application, and the interpretation of EBV tests.

Keywords: Epstein–Barr virus; carcinoma; exosome; laboratory diagnostic techniques.

Publication types

  • Review