Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521

Biochim Biophys Acta Bioenerg. 2020 Jun 1;1861(5-6):148184. doi: 10.1016/j.bbabio.2020.148184. Epub 2020 Mar 14.

Abstract

The Photosystem I (PSI) reaction center in cyanobacteria is comprised of ~96 chlorophyll (Chl) molecules, including six specialized Chl molecules denoted Chl1A/Chl1B (P700), Chl2A/Chl2B, and Chl3A/Chl3B that are arranged in two branches and function in primary charge separation. It has recently been proposed that PSI from Chroococcidiopsis thermalis (Nürnberg et al. (2018) Science 360, 1210-1213) and Fischerella thermalis PCC 7521 (Hastings et al. (2019) Biochim. Biophys. Acta 1860, 452-460) contain Chl f in the positions Chl2A/Chl2B. We tested this proposal by exciting RCs from white-light grown (WL-PSI) and far-red light grown (FRL-PSI) F. thermalis PCC 7521 with femtosecond pulses and analyzing the optical dynamics. If Chl f were in the position Chl2A/Chl2B in FRL-PSI, excitation at 740 nm should have produced the charge-separated state P700+A0- followed by electron transfer to A1 with a τ of ≤25 ps. Instead, it takes ~230 ps for the charge-separated state to develop because the excitation migrates uphill from Chl f in the antenna to the trapping center. Further, we observe a strong electrochromic shift at 685 nm in the final P700+A1- spectrum that can only be explained if Chl a is in the positions Chl2A/Chl2B. Similar arguments rule out the presence of Chl f in the positions Chl3A/Chl3B; hence, Chl f is likely to function solely as an antenna pigment in FRL-PSI. We additionally report the presence of an excitonically coupled homo- or heterodimer of Chl f absorbing around 790 nm that is kinetically independent of the Chl f population that absorbs around 740 nm.

Keywords: Chlorophyll f; Cyanobacteria; Electron transfer; Far-red light photoacclimation (FaRLiP); Femtosecond absorption spectroscopy; Photosynthesis; Photosystem I.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chlorophyll / analogs & derivatives*
  • Chlorophyll / metabolism
  • Cyanobacteria / metabolism*
  • Cyanobacteria / radiation effects*
  • Light*
  • Light-Harvesting Protein Complexes / metabolism*
  • Photosystem I Protein Complex / metabolism*
  • Spectrometry, Fluorescence

Substances

  • Light-Harvesting Protein Complexes
  • Photosystem I Protein Complex
  • chlorophyll f
  • Chlorophyll

Supplementary concepts

  • Fischerella thermalis