Phytotoxicity assay to assess sewage sludge phytoremediation rate using guaiacol peroxidase activity (GPX): A comparison of four growth substrates

J Environ Manage. 2020 Jun 1:263:110413. doi: 10.1016/j.jenvman.2020.110413. Epub 2020 Mar 11.

Abstract

Waste disposal such as sewage sludge (biosolids) in phytoremediation is a sustainable remediation alternative for fertilizers, therefore there is a need to develop a test that will allow to determine phytoremediation dose of biosolids from the best-for-plant-growth point of view. In order to determine the doses of biosolids to degraded soils, tests based on germination of seeds and root elongation are commonly used, but also, they are subjected to large errors caused by low repeatability of results and differentiation. That is why there is a need to introduce new testing solutions that will be of use based on more reliable indicators such as biochemical activity of selected plant enzymes. The aim of the study was to demonstrate high efficiency of the guaiacol peroxidase activity (GPX) in plant-based toxicity tests used as an optimal dose amendments indicator in heavy metal degraded soil phytoremediation process. GPX were measured in underground and above ground parts of Sinapis alba L. and Brassica rapa L. in relation to germination index (GI) and biomass cultivated on four different substrates (raw degraded soil, sterilized degraded soil, water extract from degraded soil solidified with agar, water extract from degraded soil solidified with Murashige-Skoog medium). Each testing soil substrate was enriched with sewage sludge (food industry origin) in the percentage share (w/w) of 5, 10, 15, 20 and 25. The process was carried out under controlled conditions of the phytotronic chamber for a period of 14 days. The obtained values were compared for each plant separately and for all substrates and amendments rates of sewage sludge. GPX activity was expressed as a percentage increase or decrease in relation to the GPX in soil substrates without addition of sewage sludge which allowed to determine their positive or negative impact on substrate toxicity. Results of GPX activity showed that the water-based soil extracts solidified with agar give more accurate results in relation to the tests on raw soil. It has been demonstrated that the optimal phytoremediation dose of sewage sludge was in the range of 15-20%, with values of 5% and 25% respectively favoring or inhibiting plant development expressed in GPX activity. The most differentiating GPX values were obtained for the roots.Measurement of GPX activity in the roots of Sinapis alba L. cultivated on soil agar-based tests is a good, new and easy additional or alternative to the old tests based on germination and increase biomass measuring as an indicator in the assessment of optimal phytoremediation sewage sludge.

Keywords: Degraded soil; GPX; Heavy metals; Phytoremediation; Phytotoxicity; Sewage sludge.

MeSH terms

  • Biodegradation, Environmental
  • Metals, Heavy*
  • Peroxidase
  • Sewage
  • Soil
  • Soil Pollutants / analysis*

Substances

  • Metals, Heavy
  • Sewage
  • Soil
  • Soil Pollutants
  • guaiacol peroxidase
  • Peroxidase