Spatial organization of active particles with field-mediated interactions

Phys Rev E. 2020 Feb;101(2-1):022105. doi: 10.1103/PhysRevE.101.022105.

Abstract

We consider a system of independent pointlike particles performing a Brownian motion while interacting with a Gaussian fluctuating background. These particles are in addition endowed with a discrete two-state internal degree of freedom that is subjected to a nonequilibrium source of noise, which affects their coupling with the background field. We explore the phase diagram of the system and pinpoint the role of the nonequilibrium drive in producing a nontrivial patterned spatial organization. We are able, by means of a weakly nonlinear analysis, to account for the parameter-dependence of the boundaries of the phase and pattern diagram in the stationary state.