Edge solitons in Lieb topological Floquet insulator

Opt Lett. 2020 Mar 15;45(6):1459-1462. doi: 10.1364/OL.385494.

Abstract

We describe topological edge solitons in a continuous dislocated Lieb array of helical waveguides. The linear Floquet spectrum of this structure is characterized by the presence of two topological gaps with edge states residing in them. A focusing nonlinearity enables families of topological edge solitons bifurcating from the linear edge states. Such solitons are localized both along and across the edge of the array. Due to the nonmonotonic dependence of the propagation constant of the edge states on the Bloch momentum, one can construct topological edge solitons that either propagate in different directions along the same boundary or do not move. This allows us to study collisions of edge solitons moving in opposite directions. Such solitons always interpenetrate each other without noticeable radiative losses; however, they exhibit a spatial shift that depends on the initial phase difference.