Effect of Pre-Corrected pH on the Carbohydrate Hydrolysis of Bamboo during Hydrothermal Pretreatment

Polymers (Basel). 2020 Mar 7;12(3):612. doi: 10.3390/polym12030612.

Abstract

To confirm the prospects for application of pre-corrected pH hydrothermal pretreatment in biorefineries, the effects of pH on the dissolution and degradation efficiency of carbohydrates were studied. The species composition of the hydrolysate was analyzed using high efficiency anion exchange chromatography and UV spectroscopy. The result showed that the greatest balance between the residual solid and total dissolved solids was obtained at pH 4 and 170 °C. Maximum recovery rates of cellulose and lignin were as expected, whereas hemicellulose had the least recovery rate. The hemicellulose extraction rate was 42.19%, and the oligomer form accounted for 93.39% of the product. The physicochemical properties of bamboo with or without pretreatment was characterized. Compared with the traditional hydrothermal pretreatment, the new pretreatment bamboo has higher fiber crystallinity and thermal stability. In the pretreatment process, the fracture of β-aryl ether bond was inhibited and the structural dissociation of lignin was reduced. The physicochemical properties of bamboo was protected while the hemicellulose was extracted efficiently. It provides theoretical support for the efficient utilization of all components of woody biomass.

Keywords: cellulose; hemicellulose; hydrothermal pretreatment; lignin; pre-corrected pH.