Construction of a functionalized hierarchical pore metal-organic framework via a palladium-reduction induced strategy

Nanoscale. 2020 Mar 19;12(11):6250-6255. doi: 10.1039/c9nr10092j.

Abstract

Hierarchical porosity and functionalization are recognized as two crucial parameters in mediating the catalytic performance of heterogeneous catalysts, however, they are rarely achieved simultaneously in the development of metal-organic frameworks (MOFs). In this work, a simple and efficient method has been developed to synchronously construct hierarchical porosity and functionalization within a sulfonic acid group functionalized microporous MOF via a palladium-reduction induced strategy, for the first time. The generation mechanism of the mesopore has been explained using two-dimensional 1H DQ-SQ MAS NMR. The content of the mesopore and the active sites within mesoPd@NUS-6 could be finely tuned by simply controlling Pd loading. Particularly, the combination of hierarchical porosity and functionalization, as well as the ultra-stable structure endow the composites with great potential in bulk, for adsorption and heterogeneous catalysis.