Facially Amphiphilic Cholic Acid-Lysine Conjugates as Promising Antimicrobials

ACS Omega. 2020 Feb 20;5(8):3952-3963. doi: 10.1021/acsomega.9b03425. eCollection 2020 Mar 3.

Abstract

The emergence of multidrug-resistant microbes is a significant health concern posing a constant need for new antimicrobials. Membrane-targeting antibiotics are promising candidates with reduced ability of microbes to develop resistance. In the present investigation, the principal reason behind choosing cholic acid as the crucial scaffold lies in the fact that it has a facially amphiphilic nature, which provides ample opportunity to refine the amphiphilicity by linking the amino acid lysine. A total of 16 novel amphipathic cholic acid derivatives were synthesized by sequentially linking lysine to C3-β-amino cholic acid methyl ester to maintain the hydrophobic/hydrophilic balance, which could be the essential requirement for the antimicrobial activity. Among the synthesized conjugates, a series with fluorenyl-9-methoxycarbonyl moiety attached to cholic acid via lysine linker showed promising antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. A pronounced effect of increase in lysine residues was noted on the observed activity. The lead compounds were found to be active against drug-resistant bacterial and fungal clinical isolates and also improved the efficacy of antifungal agents amphotericin B and voriconazole. Membrane-permeability studies demonstrated the ability of these compounds to induce membrane damage in the tested microbes. The active conjugates did not show any hemolytic activity and were also found to be nontoxic to the normal cells as well as the examined cancer cell lines. The observed antimicrobial activity was attributed to the facial amphiphilic conformations, hydrophobic/hydrophilic balance, and the overall charge on the molecules.