Crystal structure, Hirshfeld surface analysis and inter-action energy and DFT studies of 1-(1,3-benzo-thia-zol-2-yl)-3-(2-hy-droxy-eth-yl)imidazolidin-2-one

Acta Crystallogr E Crystallogr Commun. 2020 Feb 14;76(Pt 3):370-376. doi: 10.1107/S2056989020001723. eCollection 2020 Mar 1.

Abstract

In the title mol-ecule, C12H13N3O2S, the benzo-thia-zine moiety is slightly non-planar, with the imidazolidine portion twisted only a few degrees out of the mean plane of the former. In the crystal, a layer structure parallel to the bc plane is formed by a combination of O-HHydethy⋯NThz hydrogen bonds and weak C-HImdz⋯OImdz and C-HBnz⋯OImdz (Hydethy = hy-droxy-ethyl, Thz = thia-zole, Imdz = imidazolidine and Bnz = benzene) inter-actions, together with C-HImdz⋯π(ring) and head-to-tail slipped π-stacking [centroid-to-centroid distances = 3.6507 (7) and 3.6866 (7) Å] inter-actions between thia-zole rings. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (47.0%), H⋯O/O⋯H (16.9%), H⋯C/C⋯H (8.0%) and H⋯S/S⋯H (7.6%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry indicates that in the crystal, C-H⋯N and C-H⋯O hydrogen-bond energies are 68.5 (for O-HHydethy⋯NThz), 60.1 (for C-HBnz⋯OImdz) and 41.8 kJ mol-1 (for C-HImdz⋯OImdz). Density functional theory (DFT) optimized structures at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state.

Keywords: Hirshfeld surface; benzo­thia­zine; crystal structure; hydrogen bond; triazole; π-stacking.

Grants and funding

This work was funded by National Science Foundation grant 1228232. Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hökelek.