Controlling Electron Spin Decoherence in Nd-based Complexes via Symmetry Selection

iScience. 2020 Mar 27;23(3):100926. doi: 10.1016/j.isci.2020.100926. Epub 2020 Feb 20.

Abstract

Long decoherence time is a key consideration for molecular magnets in the application of the quantum computation. Although previous studies have shown that the local symmetry of spin carriers plays a crucial part in the spin-lattice relaxation process, its role in the spin decoherence is still unclear. Herein, two nine-coordinated capped square antiprism neodymium moieties [Nd(CO3)4H2O]5- with slightly different local symmetries, C1 versus C4 (1 and 2), are reported, which feature in the easy-plane magnetic anisotropy as shown by the high-frequency electron paramagnetic resonance (HF-EPR) studies. Detailed analysis of the relaxation time suggests that the phonon bottleneck effect is essential to the magnetic relaxation in the crystalline samples of 1 and 2. The 240 GHz Pulsed EPR studies show that the higher symmetry results in longer decoherence times, which is supported by the first principle calculations.

Keywords: Materials Property; Molecules; Quantum Chemical Calculations.