Conformation Variation and Tunable Protein Adsorption through Combination of Poly(acrylic acid) and Antifouling Poly(N-(2-hydroxyethyl) acrylamide) Diblock on a Particle Surface

Polymers (Basel). 2020 Mar 4;12(3):566. doi: 10.3390/polym12030566.

Abstract

Adsorption and desorption of proteins on biomaterial surfaces play a critical role in numerous biomedical applications. Spherical diblock polymer brushes (polystyrene with photoiniferter (PSV) as the core) with different block sequence, poly(acrylic acid)-b-poly(N-(2-hydroxyethyl) acrylamide) (PSV@PAA-b-PHEAA) and poly(N-(2-hydroxyethyl) acrylamide)-b-poly(acrylic acid) (PSV@PHEAA-b-PAA) were prepared via surface-initiated photoiniferter-mediated polymerization (SI-PIMP) and confirmed by a series of characterizations including TEM, Fourier transform infrared (FTIR) and elemental analysis. Both diblock polymer brushes show typical pH-dependent properties measured by dynamic light scattering (DLS) and Zeta potential. It is interesting to find out that conformation of PSV@PAA-b-PHEAA uniquely change with pH values, which is due to cooperation of electrostatic repulsion and steric hindrance. High-resolution turbidimetric titration was applied to explore the behavior of bovine serum albumin (BSA) binding to diblock polymer brushes, and the protein adsorption could be tuned by the existence of PHEAA as well as apparent PAA density. These studies laid a theoretical foundation for design of diblock polymer brushes and a possible application in biomedical fields.

Keywords: diblock polymer brushes; pH stimuli response; protein binding; turbidity titration.