Synthesis and antiproliferative activity of 6-naphthylpterocarpans

Org Biomol Chem. 2020 Mar 18;18(11):2148-2162. doi: 10.1039/d0ob00110d.

Abstract

The Heck-oxyarylation of racemic 2-(1-naphthyl)- and 2-(2-naphthyl)-2H-chromene derivatives were carried out resulting diastereoselectively in (6S*,6aR*,11aR*)-6-(1-naphthyl)- and 6-(2-naphthyl)-pterocarpans as major products and bridged (6R*,12R*)-6,12-methanodibenzo[d,g][1,3]dioxocine derivatives as minor products. Antiproliferative activity of two 6-naphthylpterocarpans was identified by MTT assay against A2780 and WM35 human cancer cell lines with low micromolar IC50 values. The measured 0.80 and 3.51 μM IC50 values of the (6S*,6aR*,11aR*)-6-(1-naphthyl)pterocarpan derivative with 8,9-methylenedioxy substitution represent the best activities in the pterocarpan family. Enantiomers of the pterocarpan and dioxocine derivatives and their chiral 2-naphthylchroman-4-one and 2-naphthyl-2H-chromene precursors were separated by HPLC using chiral stationary phase. HPLC-ECD spectra were recorded and absolute configuration and low-energy solution conformations were determined by TDDFT-ECD calculations. Characteristic ECD transitions of the separated enantiomers were correlated with their absolute configuration.

Publication types

  • Research Support, Non-U.S. Gov't