Stimuli-Responsive Delivery of Growth Factors for Tissue Engineering

Adv Healthc Mater. 2020 Apr;9(7):e1901714. doi: 10.1002/adhm.201901714. Epub 2020 Mar 3.

Abstract

Growth factors (GFs) play a crucial role in directing stem cell behavior and transmitting information between different cell populations for tissue regeneration. However, their utility as therapeutics is limited by their short half-life within the physiological microenvironment and significant side effects caused by off-target effects or improper dosage. "Smart" materials that can not only sustain therapeutic delivery over a treatment period but also facilitate on-demand release upon activation are attracting significant interest in the field of GF delivery for tissue engineering. Three properties are essential in engineering these "smart" materials: 1) the cargo vehicle protects the encapsulated therapeutic; 2) release is targeted to the site of injury; 3) cargo release can be modulated by disease-specific stimuli. The aim of this review is to summarize the current research on stimuli-responsive materials as intelligent vehicles for controlled GF delivery; Five main subfields of tissue engineering are discussed: skin, bone and cartilage, muscle, blood vessel, and nerve. Challenges in achieving such "smart" materials and perspectives on future applications of stimuli-responsive GF delivery for tissue regeneration are also discussed.

Keywords: growth factors; regenerative medicine; stimuli-responsive delivery; tissue engineering.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Drug Delivery Systems*
  • Intercellular Signaling Peptides and Proteins
  • Tissue Engineering*
  • Wound Healing

Substances

  • Intercellular Signaling Peptides and Proteins