17(S),18(R)-epoxyeicosatetraenoic acid generated by cytochrome P450 BM-3 from Bacillus megaterium inhibits the development of contact hypersensitivity via G-protein-coupled receptor 40-mediated neutrophil suppression

FASEB Bioadv. 2019 Dec 24;2(1):59-71. doi: 10.1096/fba.2019-00061. eCollection 2020 Jan.

Abstract

Dietary intake of ω3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid is beneficial for health control. We recently identified 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) as a lipid metabolite endogenously generated from eicosapentaenoic acid that exhibits potent anti-allergic and anti-inflammatory properties. However, chemically synthesized 17,18-EpETE is enantiomeric due to its epoxy group-17(S),18(R)-EpETE and 17(R),18(S)-EpETE. In this study, we demonstrated stereoselective differences of 17(S),18(R)-EpETE and 17(R),18(S)-EpETE in amelioration of skin contact hypersensitivity and found that anti-inflammatory activity was detected in 17(S),18(R)-EpETE, but not in 17(R),18(S)-EpETE. In addition, we found that cytochrome P450 BM-3 derived from Bacillus megaterium stereoselectively converts EPA into 17(S),18(R)-EpETE, which effectively inhibited the development of skin contact hypersensitivity by inhibiting neutrophil migration in a G protein-coupled receptor 40-dependent manner. These results suggest the new availability of a bacterial enzyme to produce a beneficial lipid mediator, 17(S),18(R)-EpETE, in a stereoselective manner. Our findings highlight that bacterial enzymatic conversion of fatty acid is a promising strategy for mass production of bioactive lipid metabolites.

Keywords: anti‐inflammation; dermatitis; epoxy‐fatty acid; lipid mediators; structure‐activity relationship.