Miniature fiber-optic tip pressure sensor assembled by hydroxide catalysis bonding technology

Opt Express. 2020 Jan 20;28(2):948-958. doi: 10.1364/OE.380589.

Abstract

A miniature fiber-optic tip Fabry-Perot (FP) pressure sensor with excellent high-temperature survivability, assembled by hydroxide catalysis bonding (HCB) technology, is proposed and experimentally demonstrated. A standard single-mode fiber is fusion spliced to a fused silica hollow tube with an outer diameter (OD) of 125 µm, and a 1-µm-thick circular silicon diaphragm with a diameter slightly larger than the OD is bonded to the other endface of the hollow tube by HCB technology. The ultrathin silicon diaphragm is prepared on a silicon-on-insulator (SOI) wafer produced by microelectromechanical systems (MEMS), providing the capability of large-scale mass production. The HCB technology enables a polymer-free bonding between diaphragm and hollow tube on fiber tip with the obvious advantages of high alignment precision, normal pressure and temperature (NPT) operation, and reliable effectiveness. The static pressure and temperature response of the proposed sensor are discussed. Results show that the sensor has a measurable pressure range of 0∼100 kPa, which is well consistent with the measurement range of biological blood pressure. The pressure sensitivity is up to 2.13 nm/kPa with a resolution of 0.32% (0.32kPa). Besides, the sensor possesses a unique high-temperature resistant capability up to 600 °C, which can easily survive even in high-temperature sterilization processes, and it has a low temperature dependence of 0.09 kPa/°C due to the induced HCB bonding technology and the silicon-based diaphragm. Thus, the proposed fiber tip pressure sensor is desirable for invasive biomedical pressure diagnostics and pressure monitoring in related harsh environments.