Ring resonator enhanced mode-hop-free wavelength tuning of an integrated extended-cavity laser

Opt Express. 2020 Feb 17;28(4):5669-5683. doi: 10.1364/OE.386356.

Abstract

Extending the cavity length of diode lasers with feedback from Bragg structures and ring resonators is highly effective for obtaining ultra-narrow laser linewidths. However, cavity length extension also decreases the free-spectral range of the cavity. This reduces the wavelength range of continuous laser tuning that can be achieved with a given phase shift of an intracavity phase tuning element. We present a method that increases the range of continuous tuning to that of a short equivalent laser cavity, while maintaining the ultra-narrow linewidth of a long cavity. Using a single-frequency hybrid integrated InP-Si3N4 diode laser with 120 nm coverage around 1540 nm, with a maximum output of 24 mW and lowest intrinsic linewidth of 2.2 kHz, we demonstrate a six-fold increased continuous and mode-hop-free tuning range of 0.22 nm (28 GHz) as compared to the free-spectral range of the laser cavity.