Evaluation of Auricular Cartilage Reconstruction Using a 3-Dimensional Printed Biodegradable Scaffold and Autogenous Minced Auricular Cartilage

Ann Plast Surg. 2020 Aug;85(2):185-193. doi: 10.1097/SAP.0000000000002313.

Abstract

Auricular cartilage reconstruction represents one of the greatest challenges for otolaryngology-head and neck surgery. The native structure and composition of the auricular cartilage can be achieved by combining a suitable chondrogenic cell source with an appropriate scaffold. In reconstructive surgery for cartilage tissue, autogenous cartilage is considered to be the best chondrogenic cell source. Polycaprolactone is mainly used as a tissue-engineered scaffold owing to its mechanical properties, miscibility with a large range of other polymers, and biodegradability. In this study, scaffolds with or without autogenous minced auricular cartilage were implanted bilaterally in rabbits for auricular regeneration. Six weeks (n = 4) and 16 weeks (n = 4) after implantation, real-time quantitative reverse transcription polymerase chain reaction and histology were used to assess the regeneration of the auricular cartilage. Quantitative reverse transcription polymerase chain reaction analysis revealed that the messenger RNA expression of aggrecan, collagen I, and collagen II was higher in scaffolds with 50% minced cartilage than the scaffold-only groups or scaffolds with 30% minced cartilage (P < 0.05). Furthermore, histological analysis demonstrated significantly superior cartilage regeneration in scaffolds with the minced cartilage group compared with the scaffold-only and control groups (P < 0.05). Autogenous cartilage can be easily obtained and loaded onto a scaffold to promote the presence of chondrogenic cells, allowing for an improvement of the reconstruction of auricular cartilage. Here, the regeneration of auricular cartilage was also successful in the 50% minced cartilage group. The results presented in this study could have clinical implications, as they demonstrate the potential of a 1-stage process for auricular reconstruction.

MeSH terms

  • Animals
  • Chondrocytes*
  • Chondrogenesis
  • Ear Cartilage*
  • Printing, Three-Dimensional
  • Rabbits
  • Tissue Engineering
  • Tissue Scaffolds