Flux Growth and Superconducting Properties of (Ce,Pr)OBiS2 Single Crystals

Front Chem. 2020 Feb 4:8:44. doi: 10.3389/fchem.2020.00044. eCollection 2020.

Abstract

Ce1-x Pr x OBiS2 (0. 1 ≤ x ≤ 0.9) single crystals were grown using a CsCl flux method. Their structural and physical properties were examined by X-ray diffraction, X-ray absorption, transmission electron microscopy, and electrical resistivity. All of the Ce1-x Pr x OBiS2 single crystals with 0.1 ≤ x ≤ 0.9 exhibited tetragonal phase. With increasing Pr content, the a-axis and c-axis lattice parameters decreased and increased, respectively. Transmission electron microscope analysis of Ce0.1Pr0.9OBiS2 (x = 0.9) single crystal showed no stacking faults. Atomic-resolution energy dispersive X-ray spectrometry mapping revealed that Bi, Ce/Pr, O, and S occupied different crystallographic sites, while Ce and Pr randomly occupied the same sites. X-ray absorption spectra showed that an increase of the Pr ratio increased the ratio of Ce4+/Ce3+. All of the Ce1-x Pr x OBiS2 crystals showed superconducting transition, with a maximum transition temperature of ~4 K at x = 0.9.

Keywords: BiS2 superconductor; TEM; XAFS; flux growth; single crystals.