Effect of light irradiation condition on gap formation under polymeric dental restoration; OCT study

Z Med Phys. 2020 Aug;30(3):194-200. doi: 10.1016/j.zemedi.2020.02.001. Epub 2020 Feb 26.

Abstract

Objective: To investigate the effect of two light-curing systems; quartz tungsten-halogen (QTH) and light-emitting diode (LED), and irradiation time on interfacial gap formation of dental composite resin restorations bonded with an adhesive resin using optical coherence tomography (OCT).

Materials and methods: Forty cavities were prepared in extracted human molar teeth and divided into four groups (n=10) based on the type of light curing system QTH (LITEX 680A) and LED (Demi Plus) and curing duration (10 s or 40 s). A single-step self-etching dental adhesive (Tetric® N-Bond; Ivoclar Vivadent AG, Schaan, FL, Liechtenstein) was applied and polymerized with QTH for 10 s (QTH-10), or for 40 s (QTH-40). Similarly, the adhesive in LED-10 and LED-40 groups was polymerized with an LED for 10 s or 40 s, respectively. Then, all specimens were restored with Filtek™ Z350 XT flowable composite (3M ESPE AG, St. Paul, MN, USA) and immersed in ammoniacal silver-nitrate contrasting solution. Cross-sectional images were recorded at every 250μm using cross-polarization OCT system (CP-OCT; IVS-300, Santec, Komaki, Aichi, Japan). Image analysis to quantify the percentage of gap at resin-dentin interface was performed using a custom plugin for ImageJ software.

Results: Data analysis using one-way ANOVA showed a significant difference in mean gap percentage between the four test groups (p<0.0001). Mean gap percentage values were 75.8%, 53.2%, 9.9% and 5.6%. The highest for LED-10 followed by LED-40 (p <0.05). QTH-40 revealed a slightly better adaptation compared with QTH-10, but the difference between them was not significant (p <0.05).

Conclusion: CP-OCT with a contrast agent is a useful non-invasive imaging tool for dental composite resin materials. QTH showed better results than LED under the experimental conditions. When using an LED light-curing unit, prolonged irradiation improved interfacial adaptation of dental composite bonded with a self-etching adhesive.

Keywords: Flowable composite; Halogen polymerization light; OCT; Optical Coherence Tomography; Self-etch Adhesive; Tooth-composite bond.

MeSH terms

  • Dental Restoration, Permanent / instrumentation*
  • Light*
  • Materials Testing
  • Polymers*
  • Resins, Synthetic*
  • Tomography, Optical Coherence

Substances

  • Polymers
  • Resins, Synthetic