High-Mobility 2D Hole Gas at a SrTiO3 Interface

Adv Mater. 2020 Apr;32(14):e1906003. doi: 10.1002/adma.201906003. Epub 2020 Feb 27.

Abstract

Strontium titanate (SrTiO3 or STO) is important for oxide-based electronics as it serves as a standard substrate for a wide range of high-temperature superconducting cuprates, colossal magnetoresistive manganites, and multiferroics. Moreover, in its heterostructures with different materials, STO exhibits a broad spectrum of important physics such as superconductivity, magnetism, the quantum Hall effect, giant thermoelectric effect, and colossal ionic conductivity, most of which emerge in a two-dimensional (2D) electron gas (2DEG) formed at an STO interface. However, little is known about its counterpart system, a 2D hole gas (2DHG) at the STO interface. Here, a simple way of realizing a 2DHG with an ultrahigh mobility of 24 000 cm2 V-1 s-1 is demonstrated using an interface between STO and a thin amorphous FeOy layer, made by depositing a sub-nanometer-thick Fe layer on an STO substrate at room temperature. This mobility is the highest among those reported for holes in oxides. The carrier type can be switched from p-type (2DHG) to n-type (2DEG) by controlling the Fe thickness. This unprecedented method of forming a 2DHG at an STO interface provides a pathway to unexplored hole-related physics in this system and enables extremely low-cost and high-speed oxide electronics.

Keywords: 2D hole gases; oxide-based electronics; room-temperature deposition.