Strong Wind Characteristics and Buffeting Response of a Cable-Stayed Bridge under Construction

Sensors (Basel). 2020 Feb 24;20(4):1228. doi: 10.3390/s20041228.

Abstract

This study carries out a detailed full-scale investigation on the strong wind characteristics at a cable-stayed bridge site and associated buffeting response of the bridge structure during construction, using a field monitoring system. It is found that the wind turbulence parameters during the typhoon and monsoon conditions share a considerable amount of similarity, and they can be described as the input turbulence parameters for the current wind-induced vibration theory. While the longitudinal turbulence integral scales are consistent with those in regional structural codes, the turbulence intensities and gust factors are less than the recommended values. The wind spectra obtained via the field measurements can be well approximated by the von Karman spectra. For the buffeting response of the bridge under strong winds, its vertical acceleration responses at the extreme single-cantilever state are significantly larger than those in the horizontal direction and the increasing tendencies with mean wind velocities are also different from each other. The identified frequencies of the bridge are utilized to validate its finite element model (FEM), and these field-measurement acceleration results are compared with those from the FEM-based numerical buffeting analysis with measured turbulence parameters.

Keywords: buffeting response; cable-stayed bridge; construction; field measurement; wind and structural health monitoring; wind characteristics; wireless sensor networks.