Designing All-Polymer Nanostructured Solid Electrolytes: Advances and Prospects

ACS Omega. 2020 Feb 10;5(6):2531-2540. doi: 10.1021/acsomega.9b04098. eCollection 2020 Feb 18.

Abstract

Multi-phase nanostructured polymer electrolytes, where the one phase conducts ions while the other imparts the desired mechanical properties, are currently the most promising candidates for solid-state electrolytes in high-density lithium metal batteries. In contrast to homogeneous polymer electrolytes, where ion transport is coupled with polymer segmental dynamics and any attempt to improve conductivity via faster polymer motions results in a decrease in stiffness, nanostructured materials efficiently decouple these two antagonistic parameters. Nevertheless, for reasons discussed herein the synthesis of a polymer electrolyte that simultaneously has a shear modulus of G' ≈ GPa and an ion conductivity of σ > 10-4 S/cm (in the case dual ion conductor) or of σ > 10-5 S/cm (in the case of single-ion conductor) remains a challenge. This review focuses on recent designing strategies for the synthesis of all-polymer nanostructured electrolytes, and protocols for introducing a single-ion character in such materials.

Publication types

  • Review