Rate constants of carbonate radical anion reactions with molecules of environmental interest in aqueous solution: A review

Sci Total Environ. 2020 May 15:717:137219. doi: 10.1016/j.scitotenv.2020.137219. Epub 2020 Feb 11.

Abstract

The rate constants of carbonate radical anion (CO3-) reaction with organic molecules, mainly of environmental interest, were collected from the literature and structure effects were discussed together with methods of rate constant determination and reaction mechanisms. These rate constants are essential for modelling chemical processes taking place with participation of reactive radicals in the environment determining the persistence of certain toxic compounds. The rate constants span over a very wide range from 102 to 109 mol-1 dm3 s-1, but, even the highest values are smaller by a factor of 2-5 as the diffusion controlled limit. This survey shows that only those molecules have high rate constants in the 107-109 mol-1 dm3 s-1 range which have special electron rich part(s). These molecules are removed selectively in CO3- reactions. Such electron rich moiety is the NH2 group attached to an aromatic ring. High vales were measured e.g., for most of anilines or the sulfonamide antibiotics. -CO group attached to the N-atom (in acetanilides and in phenylurea herbicides), or strong electron withdrawing substituents on benzene ring strongly decrease the rate constant. High values were also measured for aromatic molecules with dissociated -OH group (O-, phenoxides). The thioether group (e.g., in amino acids, or in fenthion or phorate insecticides) also activates the molecules in CO3- reactions.

Keywords: Carbonate radical anion; One-electron oxidation; Rate constant; Structure dependence.

Publication types

  • Review