Self-Organized Synchronization of Phonon Lasers

Phys Rev Lett. 2020 Feb 7;124(5):053604. doi: 10.1103/PhysRevLett.124.053604.

Abstract

Self-organized synchronization is a ubiquitous collective phenomenon, in which each unit adjusts their rhythms to achieve synchrony through mutual interactions. The optomechanical systems, due to their inherently engineerable nonlinearities, provide an ideal platform to study self-organized synchronization. Here, we demonstrate the self-organized synchronization of phonon lasers in a two-membrane-in-the-middle optomechanical system. The probe of each individual membrane enables us to monitor the real-time transient dynamics of synchronization, which reveals that the system enters into the synchronization regime via a torus birth bifurcation line. The phase-locking phenomenon and the transition between in-phase and antiphase regimes are directly observed. Moreover, such a system greatly facilitates the controllable synchronous states, and consequently a phononic memory is realized by tuning the system parameters. This result is an important step towards the future studies of many-body collective behaviors in multiresonator optomechanics with long distances, and might find potential applications in quantum information processing and complex networks.