Synthetic Anti-PT Symmetry in a Single Microcavity

Phys Rev Lett. 2020 Feb 7;124(5):053901. doi: 10.1103/PhysRevLett.124.053901.

Abstract

Non-Hermitian systems based on parity-time (PT) and anti-PT symmetry reveal rich physics beyond the Hermitian regime. So far, realizations of such symmetric systems have been limited to the spatial domain. Here we theoretically and experimentally demonstrate synthetic anti-PT symmetry in a spectral dimension induced by nonlinear Brillouin scattering in a single optical microcavity, where Brillouin scattering induced transparency or absorption in two spectral resonances provides the optical gain and loss to observe a phase transition between two symmetry regimes. This scheme provides a new paradigm towards the investigation of non-Hermitian physics in a synthetic photonic dimension for all-optical signal processing and quantum information science.