Formation of highly excited iodine atoms from multiphoton excitation of CH3I

Phys Chem Chem Phys. 2020 Mar 7;22(9):4984-4992. doi: 10.1039/c9cp06242d. Epub 2020 Feb 21.

Abstract

Mass resolved REMPI spectra, as well as CH3+and I+ ion and photoelectron images, were recorded for two-photon resonant excitations of CH3I via s, p and d Rydberg states (CH3I**) in the excitation region of 55 700 to 70 000 cm-1. Photoelectron (PE) and ion kinetic energy release spectra (KERs) were derived from the images. The data revealed that after the two-photon resonant excitation, an additional photon is absorbed to form one or more superexcited state(s) (CH3I#), followed by branching into three pathways. The major one is the dissociation of CH3I# to form excited Rydberg states of iodine atoms (I**) along with CH3(X), a phenomenon not commonly observed in methyl halides. The second (minor) pathway involves autoionization of CH3I# towards CH3I+(X), which absorbs another photon to form CH3+ along with I/I* and the third one (minor) is CH3I# dissociation towards the ion pair, CH3+ + I-, prior to I- electron ejection. Furthermore, one-photon non-resonant dissociation of CH3I to form CH3(X) and I/I* prior to three-photon ionization of the fragments is also detected.