Exposure to sub-inhibitory ciprofloxacin and nitrofurantoin concentrations increases recA gene expression in uropathogenic Escherichia coli: The role of RecA protein as a drug target

Eur J Pharm Sci. 2020 Apr 15:146:105268. doi: 10.1016/j.ejps.2020.105268. Epub 2020 Feb 17.

Abstract

Sub-inhibitory concentrations (sub-MIC) of antimicrobial agents can lead to genetic changes in bacteria, modulating the expression of genes related to bacterial stress and leading to drug resistance. Herein we describe the impact of sub-MIC of ciprofloxacin and nitrofurantoin on three uropathogenic Escherichia coli strains. Disk-diffusion assays with different antimicrobial agents were tested to detect phenotype alterations, and quantitative real-time PCR (qRT-PCR) was performed to analyze the expression of ompF and recA genes. Significant reduction on the susceptibility to ciprofloxacin and nitrofurantoin was detected on disk diffusion test. The qRT-PCR results revealed a 1.2-4.7 increase in recA expression in all E. coli studied, while the ompF expression varied. Because RecA was pointed as an important component to the development of drug resistance, molecular docking studies were performed with three experimentally known inhibitors of this enzyme. These studies aimed to understand the inhibitory binding mode of such compounds. The results confirmed the ADP/ATP binding site as a potential site of inhibitor recognition and a binding mode based on π-stacking interactions with Tyr103 and hydrogen bonds with Tyr264. These findings can be useful for guiding the search and design of new antimicrobial agents, mainly concerning the treatment of infections with resistant bacterial strains.

Keywords: Ciprofloxacin; Escherichia coli; Molecular docking; Nitrofurantoin; RecA inhibitors; SOS response.

MeSH terms

  • Anti-Infective Agents, Urinary / chemistry
  • Anti-Infective Agents, Urinary / pharmacology*
  • Ciprofloxacin / chemistry
  • Ciprofloxacin / pharmacology*
  • DNA-Binding Proteins / drug effects*
  • DNA-Binding Proteins / genetics
  • Escherichia coli Proteins / drug effects*
  • Escherichia coli Proteins / genetics
  • Genes, Bacterial*
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation
  • Nitrofurantoin / chemistry
  • Nitrofurantoin / pharmacology*
  • Rec A Recombinases / drug effects*
  • Rec A Recombinases / genetics
  • Uropathogenic Escherichia coli / drug effects*
  • Uropathogenic Escherichia coli / genetics

Substances

  • Anti-Infective Agents, Urinary
  • DNA-Binding Proteins
  • Escherichia coli Proteins
  • recA protein, E coli
  • Ciprofloxacin
  • Nitrofurantoin
  • Rec A Recombinases