MicroRNA-4651 targets bromodomain-containing protein 4 to inhibit non-small cell lung cancer cell progression

Cancer Lett. 2020 Apr 28:476:129-139. doi: 10.1016/j.canlet.2020.02.018. Epub 2020 Feb 17.

Abstract

Bromodomain-containing protein 4 (BRD4) overexpression in non-small cell lung cancer (NSCLC) promotes cancer progression. Here, we show that miR-4651 selectively targets and negatively regulates BRD4 in A549 and primary human NSCLC cells. RNA pull-down experiments confirmed that miR-4651 directly binds to BRD4 mRNA. Further, ectopic overexpression of miR-4651 in A549 cells and primary NSCLC cells decreased BRD4 3'-UTR luciferase reporter activity and its expression, whereas miR-4651 inhibition elevated both. Functional studies demonstrated that NSCLC cell growth, proliferation, and migration were suppressed with ectopic miR-4651 overexpression but enhanced with miR-4651 inhibition. BRD4 re-expression using a 3'-UTR mutant BRD4 reversed A549 cell inhibition induced by miR-4651 overexpression. Further, miR-4651 overexpression or inhibition failed to alter the functions of BRD4-KO A549 cells. In vivo, miR-4651-overexpressing A549 xenografts grew slowly than control A549 xenografts in severe combined immunodeficient mice. Finally, miR-4651 was downregulated in human NSCLC tissues, correlating with BRD4 elevation. Together, miR-4651 targets BRD4 to inhibit NSCLC cell growth in vitro and in vivo.

Keywords: BET family protein; Lung cancer; Tumor-suppressive miRNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology*
  • Cell Cycle Proteins / antagonists & inhibitors
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism*
  • Cell Movement
  • Cell Proliferation
  • Female
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • Male
  • Mice
  • Mice, SCID
  • MicroRNAs / genetics*
  • Middle Aged
  • Prognosis
  • Transcription Factors / antagonists & inhibitors
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • BRD4 protein, human
  • Biomarkers, Tumor
  • Cell Cycle Proteins
  • MicroRNAs
  • Transcription Factors