Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release

Autophagy. 2021 Mar;17(3):779-795. doi: 10.1080/15548627.2020.1732686. Epub 2020 Mar 1.

Abstract

Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery interacts with HCMV already at the early nuclear stages of particle morphogenesis. The membrane-bound form of LC3 and several autophagy receptors were packaged into extracellular HCMV virions. This suggested that autophagic membranes were included during secondary envelopment of HCMV virions. To further address the importance of autophagy in HCMV infection, we generated an HCMV mutant that expressed a dominant-negative version of the protease ATG4B (BAD-ATG4BC74A). The proteolytic activity of ATG4B is required for LC3 cleavage, priming it for membrane conjugation. Surprisingly, both genome replication and virus release were enhanced in cells infected with BAD-ATG4BC74A, compared to control strains. These results show that autophagy operates as an antiviral process during HCMV infection but is dispensable for secondary HCMV particle envelopment.Abbreviations: ATG: autophagy-related; BAC: bacterial artificial chromosome; BECN1: beclin 1; CPE: cytopathic effect; cVACs: cytoplasmic viral assembly compartments; d.p.i.: days post-infection; DB: dense body; EBV: Epstein-Barr virus; galK: galactokinase; HCMV: human cytomegalovirus; HFF: human foreskin fibroblasts; IE: immediate-early; IRS: internal repeat short; LC3: MAP1LC3A/B; m.o.i.; multiplicity of infection; MCP: major capsid protein; Pp: phosphoprotein; sCP/UL48a: smallest capsid protein; TRS: terminal repeat short; UL: unique long; US: unique short.

Keywords: Cellular host defense; herpesviruses; human cytomegalovirus; viral morphogenesis; xenophagy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy / physiology
  • Cytomegalovirus / genetics*
  • Cytomegalovirus Infections / metabolism
  • Cytoplasm / metabolism
  • Epstein-Barr Virus Infections / metabolism
  • Fibroblasts / metabolism*
  • Humans
  • Morphogenesis / physiology*

Grants and funding

The work was funded by grants from the Deutsche Forschungsgemeinschaft (DFG), individual project [PL236/7-1](BP).