Electron-Phonon Coupling in Current-Driven Single-Molecule Junctions

J Am Chem Soc. 2020 Feb 19;142(7):3384-3391. doi: 10.1021/jacs.9b07757. Epub 2020 Feb 4.

Abstract

Vibrational excitations provoked by coupling effects during charge transport through single molecules are intrinsic energy dissipation phenomena, in close analogy to electron-phonon coupling in solids. One fundamental challenge in molecular electronics is the quantitative determination of charge-vibrational (electron-phonon) coupling for single-molecule junctions. The ability to record electron-phonon coupling phenomena at the single-molecule level is a key prerequisite to fully rationalize and optimize charge-transport efficiencies for specific molecular configurations and currents. Here we exemplarily determine the pertaining coupling characteristics for a current-carrying chemically well-defined molecule by synchronous vibrational and current-voltage spectroscopy. These metal-molecule-metal junction insights are complemented by time-resolved infrared spectroscopy to assess the intramolecular vibrational relaxation dynamics. By measuring and analyzing the steady-state vibrational distribution during transient charge transport in a bis-phenylethynyl-anthracene derivative using anti-Stokes Raman scattering, we find ∼0.5 vibrational excitations per elementary charge passing through the metal-molecule-metal junction, by means of a rate model ansatz and quantum-chemical calculations.