A fluorination method for measuring the 13 C-13 C isotopologue of C2 molecules

Rapid Commun Mass Spectrom. 2020 Jun 15;34(11):e8761. doi: 10.1002/rcm.8761.

Abstract

Rationale: Doubly substituted isotope species ("clumped" isotopes) can provide insights into the biogeochemical history of a molecule, including its temperature of formation and/or its (bio)synthetic pathway. Here, we propose a new fluorination method for the measurement of 13 C-13 C species in C2 molecules using a conventional isotope ratio mass spectrometer. Target molecules include ethane, ethene and ethanol.

Methods: 13 C-13 C isotope species in C2 molecules were measured as C2 F6 using a conventional isotope ratio mass spectrometer. Ethane and ethene are directly fluorinated to C2 F6 . Ethanol is measured after dehydration to ethene and subsequent fluorination of the latter. The method enables the measurement of the Δ13 C13 C values normalized against a reference working standard.

Results: The reproducibility of the whole protocol, including chemical modification steps and measurement of C2 F6 isotopologues, is better than ±0.14‰ for all the compounds. Ethane from natural gas samples and biologically derived ethanol show a narrow range of Δ13 C13 C values, varying from 0.72‰ to 0.90‰. In contrast, synthetic ethanol as well as putative abiotic ethane show Δ13 C13 C values significantly different from this range with values of 1.14‰ and 0.25‰, respectively.

Conclusions: The method presented here provides alternative means of measuring 13 C-13 C species to that using high-resolution mass spectrometry. Preliminary data from natural and synthetic molecules re-emphasizes the potential of 13 C clumped isotope species as a (bio)marker.