A Maltol-Containing Ruthenium Polypyridyl Complex as a Potential Anticancer Agent

Chemistry. 2020 Apr 16;26(22):4997-5009. doi: 10.1002/chem.201904877. Epub 2020 Mar 26.

Abstract

Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported the ruthenium complex ([Ru(DIP)2 (sq)](PF6 ) (where DIP is 4,7-diphenyl-1,10-phenantroline and sq is semiquinonate) with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2 (mal)](PF6 ), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2 (mal)](PF6 ), its stability in solutions and under conditions that resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity than cisplatin, inspiring further tests. [Ru(DIP)2 (mal)](PF6 ) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism.

Keywords: DNA; bioinorganic chemistry; cancer; medicinal inorganic chemistry; ruthenium.

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cisplatin / chemistry
  • Cisplatin / pharmacology*
  • Coordination Complexes / chemistry
  • Coordination Complexes / pharmacology*
  • HeLa Cells
  • Humans
  • Ligands
  • Molecular Structure
  • Pyrones / chemistry
  • Pyrones / pharmacology*
  • Ruthenium / chemistry*
  • Ruthenium / pharmacology

Substances

  • Antineoplastic Agents
  • Coordination Complexes
  • Ligands
  • Pyrones
  • maltol
  • Ruthenium
  • Cisplatin