Torsions, low-frequency vibrations, and vibration-torsion ("vibtor") levels in the m-chlorotoluene cation

J Chem Phys. 2020 Feb 14;152(6):064303. doi: 10.1063/1.5142992.

Abstract

Zero-electron-kinetic-energy (ZEKE) spectra are presented for m-chlorotoluene (mClT), employing different low-lying torsional and vibration-torsional ("vibtor") levels of the S1 state as intermediates. The adiabatic ionization energy is determined to be 71 319 cm-1 ± 5 cm-1 (8.8424 ± 0.0006 eV). It is found that the activity in the ZEKE spectra varies greatly for different levels and is consistent with the assignments of the S1 levels of m-fluorotoluene (mFT) deduced in the recent fluorescence study of Stewart et al. [J. Chem. Phys. 150, 174303 (2019)] and the ZEKE study from Kemp et al. [J. Chem. Phys. 151, 084311 (2019)]. As with mFT, the intensities in the ZEKE spectra of mClT are consistent with a phase change in the torsional potential upon ionization, allowing a large number of torsions and vibtor levels to be observed for the cation. Vibration-induced modifications of the torsional potential are discussed. Calculated vibrational wavenumbers for the S0, S1, and D0 + states are also presented.