Comparison of headspace solid-phase microextraction and solvent extraction method for the simultaneous analysis of various soil fumigants in soil or water by gas chromatography-mass spectrometry

J Sep Sci. 2020 Apr;43(8):1499-1513. doi: 10.1002/jssc.201900767. Epub 2020 Mar 29.

Abstract

The quantity of soil fumigants has increased globally that has focused attention on their environmental behavior. However, simultaneous analysis of traces of fumigant residues is often unreported because analysis methods are not readily available to measure them at low concentrations. In this study, typical solvent extraction methods were compared with headspace solid-phase microextraction methods. Both methods can be used for simultaneously measuring the concentrations of five commonly used soil fumigants in soil or water. The solvent extraction method showed acceptable recovery (76-103%) and intraday relative standard deviations (0.8-11%) for the five soil fumigants. The headspace solid-phase microextraction method also showed acceptable recovery (72-104%) and precision rates (1.3-17%) for the five soil fumigants. The solvent extraction method was more precise and more suitable for analyzing relatively high fumigant residue levels (0.05-5 μg/g) contained in multiple soil samples. The headspace solid-phase microextraction method, however, had a much lower limits of detection (0.09-2.52 μg/kg or μg/L) than the solvent extraction method (5.8-29.2 μg/kg), making headspace solid-phase microextraction most suitable for trace analysis of these fumigants. The results confirmed that the headspace solid-phase microextraction method was more convenient and sensitive for the determination of fumigants to real soil samples.

Keywords: gas chromatography-mass spectrometry; headspace solid-phase microextraction; residue concentration; soil fumigants; solvent extraction.