Ultra-compact hybrid plasmonic mode convertor based on unidirectional eigenmode expansion

Opt Lett. 2020 Feb 15;45(4):803-806. doi: 10.1364/OL.383092.

Abstract

An ultra-compact hybrid plasmonic mode convertor is demonstrated based on a hybrid plasmonic slot waveguide structure. Benefiting from the unidirectional eigenmode expansion approach, a mode-interference-based ${{\rm TE}_{00}}$TE00-to-${{\rm TM}_{01}}$TM01 mode convertor is realized for the first time, to the best of our knowledge, with an ultra-compact footprint of only ${2}.{33} \times {7}\,\,\unicode{x00B5} {{\rm m}^2}$2.33×7µm2. At the wavelength of 1550 nm, the insertion loss is below 2.34 dB, and the extinction ratio is 25.6 dB with mode conversion purity as high as 94.6%. The extinction ratio is over 15.5 dB for the entire C-band with a bandwidth of extinction ratio above 10 dB larger than 110 nm. The transmissivity of the crosstalk ${{\rm TE}_{10}}$TE10 and ${{\rm TE}_{02}}$TE02 at 1550 nm is $ - {16.1}$-16.1 and $ - {22.7}\,\,{\rm dB}$-22.7dB, respectively.