Electrospinning of a Near Gel Resin To Produce Cross-Linked Fibrous Matrices

Langmuir. 2020 Mar 10;36(9):2419-2426. doi: 10.1021/acs.langmuir.9b03870. Epub 2020 Feb 24.

Abstract

Electrospun fibers and matrices have been researched for their utility in various fields; however, because of poor mechanical strength and loss of structural integrity, their commercial viability is limited. A near gel resin (nGR) of polystyrene (PS) was used in the present approach to fabricate cross-linked fibrous matrices of better mechanical strength and oil adsorption while retaining the structural integrity. Electrospinnability of nGR was assessed in bulk (i.e., in styrene monomer) and solution (i.e., in dimethyl formamide) forms with variations in formulation and electrospinning conditions. Ultimately, a uniform cross-linked fibrous matrix of PS was prepared using an oil-in-water emulsion, where the oil phase composed of a monomer (styrene), an initiator (benzoyl peroxide), and a cross-linker (divinylbenzene) was dispersed in a continuous phase of aqueous poly(vinyl alcohol) (PVA). The monomer conversion in the oil phase was carried out below the gel point, and the nGR of PS formed in dispersed droplets was electrospun to fabricate uniform fibrous matrices with the help of a template polymer, that is, PVA. The effect of various material and process parameters on the gelation behavior, electrospinnability, and fiber uniformity was studied and optimized to produce uniform core-sheath fibrous matrices of cross-linked PS. Postelectrospinning heat treatment of matrices was carried out to achieve complete monomer conversion and cross-linking. Fiber formation behavior of the emulsion was assessed using ionic and nonionic surfactants. The cross-link density of the matrices was optimized to achieve the desired structural morphology and dimensional stability. The process of fabrication of emulsion electrospun cross-linked fibers can be further extended to a variety of other monomers in order to enhance the suitability of fibrous matrices for many applications.