Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams

Polymers (Basel). 2020 Feb 5;12(2):347. doi: 10.3390/polym12020347.

Abstract

In order to reduce the fire risk of rigid polyurethane foams (RPUF), three kinds of zeolitic imidazolate frameworks (ZIFs) were prepared. The results of Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM and X-ray diffraction (XRD) showed that ZIFs were successfully prepared. The combustion test results showed that the heat and smoke production of the composite containing ZIFs was obviously reduced. In particular, the peak heat release rate (PHRR) of ZIF-8/RPUF decreased from 740.85 kW/m2 (Ref. RPUF) to 489.56 kW/m2, while the PHRR of ZIF-7/RPUF and ZIF-11/RPUF is 598.39 and 583.36 kW/m2, respectively. The addition of ZIFs improved the thermostability of the composite. The T50% of ZIF-8/RPUF, ZIF-7/RPUF and ZIF-11/RPUF increased to 364, 382 and 380 °C, respectively. The maximum light absorption of ZIF-7/RPUF and ZIF-11/RPUF was about 88%, which is higher than that of ZIF-8/RPUF (75%). The results of Raman spectroscopy showed that the ID/IG value of Ref. RPUF is 2.96, while the ID/IG value of ZIFs/RPUF reduces to less than 2.80. The main mechanism of ZIFs for reducing the fire risk of RPUF was the catalysis and incarbonization of ZIFs during combustion based on the results of thermogravimetric analysis and Raman spectroscopy of char residue.

Keywords: flame retardancy; rigid polyurethane foams; smoke suppression; zeolitic imidazolate frameworks.