Dual Valorization of Olive Mill Wastewater by Bio-Nanosynthesis of Magnesium Oxide and Yarrowia lipolytica Biomass Production

Chem Biodivers. 2020 Mar;17(3):e1900608. doi: 10.1002/cbdv.201900608. Epub 2020 Feb 28.

Abstract

This research investigates an efficient dual valorization of olive mill wastewater in the biosynthesis of magnesium oxide nanoparticles and in the depollution of the effluent by Yarrowia lipolytica growth evaluation. After removal of polyphenols, the recovered biophenols were reacted with the magnesium precursor to provide magnesium oxide nanoparticles. In order to confirm the biosynthesized magnesium oxide nanoparticles, several analyses were undertaken. The Fourier transform infrared spectrum gives a broad absorption at 658 cm-1 confirming the presence of the magnesium oxide nanoparticles, while the UV/VIS absorption spectroscopy reveals an intense transition with a maximum absorption at 300 nm. The X-ray diffraction and transmission electron microscopy analyses show that nanoparticles are in pure cubic crystalline with spherical and hexagonal shapes (average size is 19.4 nm). The zeta potential analysis illustrates a negative potential proving a good stability of the biosynthesized nanoparticles. Nanoparticles were assigned for their in vitro antibacterial activity against Escherichia coli, Enterobacter aerogenes, Salmonella typhimurium, Staphylococcus cohnii, and Bacillus niacini. The evaluation of the growth of Yarrowia lipolytica on the recovered olive mill wastewater after removal of polyphenols yielded 3.2 g/L of the Yarrowia biomass in 72 h without nutriment additions, providing an important decrease of chemical oxygen demand (73 %).

Keywords: Yarrowia lipolytica; antibacterial activity; magnesium oxide nanoparticles; olive mill wastewater; polyphenols.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / metabolism
  • Anti-Bacterial Agents / pharmacology*
  • Bacillus / drug effects
  • Biomass
  • Enterobacter aerogenes / drug effects
  • Escherichia coli / drug effects
  • Magnesium Oxide / chemistry
  • Magnesium Oxide / metabolism
  • Magnesium Oxide / pharmacology*
  • Microbial Sensitivity Tests
  • Molecular Structure
  • Nanoparticles / chemistry
  • Olea / chemistry*
  • Particle Size
  • Salmonella typhimurium / drug effects
  • Staphylococcus / drug effects
  • Surface Properties
  • Wastewater / chemistry*
  • Yarrowia / growth & development
  • Yarrowia / metabolism*

Substances

  • Anti-Bacterial Agents
  • Waste Water
  • Magnesium Oxide

Supplementary concepts

  • Bacillus niacini
  • Staphylococcus cohnii