The High Anisotropy of the Epitaxial Growth of the Well-Aligned Sb2Se3 Nanoribbons on Mica

ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9909-9917. doi: 10.1021/acsami.9b20142. Epub 2020 Feb 14.

Abstract

One-dimensional semiconductor nanostructures, which are different from those of bulk materials, have attracted considerable interest in either scientific research or practical application. Herein, the Sb2Se3 nanoribbons have been successfully synthesized by the epitaxial growth process on mica using the rapid physical vapor deposition method. The density of the Sb2Se3 nanoribbons increased quickly when the temperature decreased, and finally, the nanoribbons connected to each other and formed a network structure even in film. These nanoribbons were all well aligned along the preferred direction that either is parallel to each other or forms 60° angles. Further structural investigation demonstrated that the Sb2Se3 nanoribbons grew along the [001] directions, which are aligned along the directions [11̅0] and [100] or [100] and [110] on the mica surface. Then, an asymmetric lattice mismatch growth mechanism causing incommensurate heteroepitaxial lattice match between the Sb2Se3 and mica crystal structure was suggested. Furthermore, a polarized photodetector based on the film with the well-aligned Sb2Se3 nanoribbons was constructed, which illustrated strong photosensitivity and high anisotropic in-plane transport either in the dark or under light. The incommensurate heteroepitaxial growth method shown here may provide access to realize well-ordered nanostructures of other inorganic materials and promote the anisotropic photodetector industrialization.

Keywords: Sb2Se3 nanoribbons; anisotropic photodetectors; heteroepitaxial growth; rapid physical vapor deposition; well-aligned.