Regional environmental assessment of dairy farms

J Dairy Sci. 2020 Apr;103(4):3275-3288. doi: 10.3168/jds.2019-17388. Epub 2020 Jan 31.

Abstract

A comprehensive, yet in depth, assessment is needed of the environmental impacts of dairy farms at regional and national scales to better track improvements made by the industry. With Pennsylvania as an example, a method using process-level simulation and cradle-to-farm gate life cycle assessment was developed and used to assess important environmental footprints of dairy farms within a state. Representative dairy farms of various sizes and management practices throughout 7 regions of the state were simulated with the Integrated Farm System Model. Environmental footprints varied widely among farms, with this variation influenced primarily by soil characteristics and climate and secondarily by farm management. Therefore, prescriptive mitigation strategies for individual farms are more effective than uniform enforcement of specific strategies across the state. Footprints for the whole state were determined by totaling values among farms and regions based on the amounts of milk produced by each. Pennsylvania dairy farms were determined to emit 4,555 with an uncertainty of ±415 Gg of CO2 equivalent of greenhouse gas with an intensity of 0.99 ± 0.09 kg of CO2 equivalent/kg of fat- and protein-corrected milk (FPCM) produced. Fossil energy consumption was 12,324 ± 1,946 TJ or 2.69 ± 0.42 MJ/kg of FPCM. Blue (nonprecipitation) water consumption was 64.1 ± 13.5 Tg with an intensity of 14.0 ± 3.0 kg/kg of FPCM. A total of all forms of reactive N loss was 43.2 ± 5.0 Gg with an intensity of 9.4 ± 1.1 g/kg of FPCM. These metrics were equivalent to 1.6% of the greenhouse gas emissions, 0.4% of fossil energy use, and 0.8% of fresh water consumption reported for the state. Thus, greenhouse gas emissions, fossil energy use, and blue water use associated with dairy farm production are relatively small compared with total estimates for the state. Perhaps the greatest environmental concern is that of ammonia emission, where dairy farms accounted for about half the estimated emissions of the state. This method can be applied to assessments of the dairy industry at larger regional and national scales.

Keywords: dairy farm; footprint; greenhouse gas; life cycle assessment; nitrogen loss.

MeSH terms

  • Animals
  • Cattle
  • Dairying* / methods
  • Environmental Monitoring*
  • Farms*
  • Greenhouse Gases
  • Milk
  • Pennsylvania

Substances

  • Greenhouse Gases