Injectable Cardiac Cell Microdroplets for Tissue Regeneration

Small. 2020 Feb;16(8):e1904806. doi: 10.1002/smll.201904806. Epub 2020 Jan 31.

Abstract

One of the strategies for heart regeneration includes cell delivery to the defected heart. However, most of the injected cells do not form quick cell-cell or cell-matrix interactions, therefore, their ability to engraft at the desired site and improve heart function is poor. Here, the use of a microfluidic system is reported for generating personalized hydrogel-based cellular microdroplets for cardiac cell delivery. To evaluate the system's limitations, a mathematical model of oxygen diffusion and consumption within the droplet is developed. Following, the microfluidic system's parameters are optimized and cardiac cells from neonatal rats or induced pluripotent stem cells are encapsulated. The morphology and cardiac specific markers are assessed and cell function within the droplets is analyzed. Finally, the cellular droplets are injected to mouse gastrocnemius muscle to validate cell retention, survival, and maturation within the host tissue. These results demonstrate the potential of this approach to generate personalized cellular microtissues, which can be injected to distinct regions in the body for treating damaged tissues.

Keywords: cell delivery; droplets; hydrogels; microfluidics; microscale.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Transplantation* / methods
  • Cell- and Tissue-Based Therapy* / methods
  • Heart*
  • Hydrogels*
  • Injections
  • Mice
  • Microfluidics
  • Models, Biological
  • Myocardium* / cytology
  • Rats

Substances

  • Hydrogels