Vaccination accelerates hepatic erythroblastosis induced by blood-stage malaria

Malar J. 2020 Jan 29;19(1):49. doi: 10.1186/s12936-020-3130-2.

Abstract

Background: Vaccination induces survival of otherwise lethal blood-stage infections of the experimental malaria Plasmodium chabaudi. Blood-stage malaria induces extramedullary erythropoiesis in the liver. This study investigates how vaccination affects the course of malaria-induced expression of erythrocytic genes in the liver.

Methods: Female Balb/c mice were vaccinated at week 3 and week 1 before challenging with 106 P. chabaudi-parasitized erythrocytes. The non-infectious vaccine consisted of erythrocyte ghosts isolated from P. chabaudi-infected erythrocytes. Gene expression microarrays and quantitative real-time PCR were used to compare mRNA expression of different erythrocytic genes in the liver of vaccination-protected and non-protected mice during infections on days 0, 1, 4, 8, and 11 p.i.

Results: Global transcriptomics analyses reveal vaccination-induced modifications of malaria-induced increases in hepatic gene expression on days 4 and 11 p.i. On these days, vaccination also alters hepatic expression of the erythropoiesis-involved genes Ermap, Kel, Rhd, Rhag, Slc4a1, Gypa, Add2, Ank1, Epb4.1, Epb4.2, Epb4.9, Spta1, Sptb, Tmod1, Ahsp, Acyp1, Gata1, Gfi1b, Tal1, Klf1, Epor, and Cldn13. In vaccination-protected mice, expression of these genes, except Epb4.1, is significantly higher on day 4 p.i. than in un-protected non-vaccinated mice, reaches maximal expression at peak parasitaemia on day 8 p.i., and is slowed down or even decreased towards the end of crisis phase on day 11 p.i.. After day 1 p.i., Epor expression takes about the same course as that of the other erythroid genes. Hepatic expression of Epo, however, is delayed in both vaccinated and non-vaccinated mice for the first 4 days p.i. and is maximal at significantly higher levels in vaccinated mice on day 8 p.i., before declining towards the end of crisis phase on day 11 p.i.

Conclusion: The present data indicate that vaccination accelerates malaria-induced erythroblastosis in the liver for 1-2 days. This may contribute to earlier replenishment of peripheral red blood cells by liver-derived reticulocytes, which may favour final survival of otherwise lethal blood-stage malaria, since reticulocytes are not preferred as host cells by P. chabaudi.

Keywords: Blood-stage malaria; Extramedullary erythropoiesis; Liver; Plasmodium chabaudi; Protective vaccination.

MeSH terms

  • Animals
  • Erythrocyte Membrane / immunology
  • Erythropoiesis / genetics
  • Erythropoiesis / immunology*
  • Female
  • Liver / parasitology
  • Liver / pathology*
  • Malaria / blood*
  • Malaria / pathology
  • Malaria Vaccines / adverse effects
  • Mice
  • Mice, Inbred BALB C
  • Plasmodium chabaudi / immunology*
  • Principal Component Analysis
  • Real-Time Polymerase Chain Reaction
  • Specific Pathogen-Free Organisms
  • Transcriptome
  • Vaccination / adverse effects*

Substances

  • Malaria Vaccines