Disease-relevant mutations alter amino acid co-evolution networks in the second nucleotide binding domain of CFTR

PLoS One. 2020 Jan 24;15(1):e0227668. doi: 10.1371/journal.pone.0227668. eCollection 2020.

Abstract

Cystic Fibrosis (CF) is an inherited disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Mutations in CFTR cause impaired chloride ion transport in the epithelial tissues of patients leading to cardiopulmonary decline and pancreatic insufficiency in the most severely affected patients. CFTR is composed of twelve membrane-spanning domains, two nucleotide-binding domains (NBDs), and a regulatory domain. The most common mutation in CFTR is a deletion of phenylalanine at position 508 (ΔF508) in NBD1. Previous research has primarily concentrated on the structure and dynamics of the NBD1 domain; However numerous pathological mutations have also been found in the lesser-studied NBD2 domain. We have investigated the amino acid co-evolved network of interactions in NBD2, and the changes that occur in that network upon the introduction of CF and CF-related mutations (S1251N(T), S1235R, D1270N, N1303K(T)). Extensive coupling between the α- and β-subdomains were identified with residues in, or near Walker A, Walker B, H-loop and C-loop motifs. Alterations in the predicted residue network varied from moderate for the S1251T perturbation to more severe for N1303T. The S1235R and D1270N networks varied greatly compared to the wildtype, but these CF mutations only affect ion transport preference and do not severely disrupt CFTR function, suggesting dynamic flexibility in the network of interactions in NBD2. Our results also suggest that inappropriate interactions between the β-subdomain and Q-loop could be detrimental. We also identified mutations predicted to stabilize the NBD2 residue network upon introduction of the CF and CF-related mutations, and these predicted mutations are scored as benign by the MUTPRED2 algorithm. Our results suggest the level of disruption of the co-evolution predictions of the amino acid networks in NBD2 does not have a straightforward correlation with the severity of the CF phenotypes observed.

MeSH terms

  • Algorithms
  • Amino Acid Substitution
  • Cystic Fibrosis / genetics*
  • Cystic Fibrosis / metabolism*
  • Cystic Fibrosis Transmembrane Conductance Regulator / chemistry*
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics*
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism
  • Evolution, Molecular
  • Genetic Association Studies
  • Humans
  • Models, Molecular
  • Mutation*
  • Protein Interaction Domains and Motifs / genetics
  • Protein Interaction Maps / genetics
  • Protein Stability
  • Sequence Alignment
  • Sequence Deletion

Substances

  • CFTR protein, human
  • Cystic Fibrosis Transmembrane Conductance Regulator

Grants and funding

The authors received no specific funding to support this work.