Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

Beilstein J Nanotechnol. 2020 Jan 8:11:92-100. doi: 10.3762/bjnano.11.9. eCollection 2020.

Abstract

Nanometer-scale resistive switching devices operated in the metallic conductance regime offer ultimately scalable and widely reconfigurable hardware elements for novel in-memory and neuromorphic computing architectures. Moreover, they exhibit high operation speed at low power arising from the ease of the electric-field-driven redistribution of only a small amount of highly mobile ionic species upon resistive switching. We investigate the memristive behavior of a so-far less explored representative of this class, the Ag/AgI material system in a point contact arrangement established by the conducting PtIr tip of a scanning probe microscope. We demonstrate stable resistive switching duty cycles and investigate the dynamical aspects of non-volatile operation in detail. The high-speed switching capabilities are explored by a custom-designed microwave setup that enables time-resolved studies of subsequent set and reset transitions upon biasing the Ag/AgI/PtIr nanojunctions with sub-nanosecond voltage pulses. Our results demonstrate the potential of Ag-based filamentary memristive nanodevices to serve as the hardware elements in high-speed neuromorphic circuits.

Keywords: memristor; nanojunction; nanosecond operation; resistive switching; silver iodide (AgI).

Grants and funding

This work was supported by the BME-Nanonotechnology FIKP grant of EMMI (BME FIKP-NAT) and the NKFI K119797 and K128534 grants.