Demonstration of a Broadband Photodetector Based on a Two-Dimensional Metal-Organic Framework

Adv Mater. 2020 Mar;32(9):e1907063. doi: 10.1002/adma.201907063. Epub 2020 Jan 23.

Abstract

Metal-organic frameworks (MOFs) are emerging as an appealing class of highly tailorable electrically conducting materials with potential applications in optoelectronics. Yet, the realization of their proof-of-concept devices remains a daunting challenge, attributed to their poor electrical properties. Following recent work on a semiconducting Fe3 (THT)2 (NH4 )3 (THT: 2,3,6,7,10,11-triphenylenehexathiol) 2D MOF with record-high mobility and band-like charge transport, here, an Fe3 (THT)2 (NH4 )3 MOF-based photodetector operating in photoconductive mode capable of detecting a broad wavelength range from UV to NIR (400-1575 nm) is demonstrated. The narrow IR bandgap of the active layer (≈0.45 eV) constrains the performance of the photodetector at room temperature by band-to-band thermal excitation of charge carriers. At 77 K, the device performance is significantly improved; two orders of magnitude higher voltage responsivity, lower noise equivalent power, and higher specific detectivity of 7 × 108 cm Hz1/2 W-1 are achieved under 785 nm excitation. These figures of merit are retained over the analyzed spectral region (400-1575 nm) and are commensurate to those obtained with the first demonstrations of graphene- and black-phosphorus-based photodetectors. This work demonstrates the feasibility of integrating conjugated MOFs as an active element into broadband photodetectors, thus bridging the gap between materials' synthesis and technological applications.

Keywords: 2D semiconductors; broadband photodetectors; low-temperature photodetection; metal-organic frameworks; photosensitivity.