Scorpion toxin inhibits the voltage-gated proton channel using a Zn2+ -like long-range conformational coupling mechanism

Br J Pharmacol. 2020 May;177(10):2351-2364. doi: 10.1111/bph.14984. Epub 2020 Mar 3.

Abstract

Background and purpose: Blocking the voltage-gated proton channel HV 1 is a promising strategy for the treatment of diseases like ischaemia stroke and cancer. However, few HV 1 channel antagonists have been reported. Here, we have identified a novel HV 1 channel antagonist from scorpion venom and have elucidated its action mechanism.

Experimental approach: HV 1 and NaV channels were heterologously expressed in mammalian cell lines and their currents recorded using whole-cell patch clamp. Site-directed mutagenesis was used to generate mutants. Toxins were recombinantly produced in Escherichia coli. AGAP/W38F-HV 1 interaction was modelled by molecular dynamics simulations.

Key results: The scorpion toxin AGAP (anti-tumour analgesic peptide) potently inhibited HV 1 currents. One AGAP mutant has reduced NaV channel activity but intact HV 1 activity (AGAP/W38F). AGAP/W38F inhibited HV 1 channel activation by trapping its S4 voltage sensor in a deactivated state and inhibited HV 1 currents with less pH dependence than Zn2+ . Mutation analysis showed that the binding pockets of AGAP/W38F and Zn2+ in HV 1 channel partly overlapped (common sites are His140 and His193). The E153A mutation at the intracellular Coulombic network (ICN) in HV 1 channel markedly reduced AGAP/W38F inhibition, as observed for Zn2+ . Experimental data and MD simulations suggested that AGAP/W38F inhibited HV 1 channel using a Zn2+ -like long-range conformational coupling mechanism.

Conclusion and implications: Our results suggest that the Zn2+ binding pocket in HV 1 channel might be a hotspot for modulators and valuable for designing HV 1 channel ligands. Moreover, AGAP/W38F is a useful molecular probe to study HV 1 channel and a lead compound for drug development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analgesics / pharmacology
  • Animals
  • Ion Channel Gating
  • Protons
  • Scorpion Venoms* / pharmacology
  • Zinc / pharmacology

Substances

  • Analgesics
  • Protons
  • Scorpion Venoms
  • Zinc