Effect of Randomly Grown Morphology of ZnO Nanorods in Inverted Organic Solar Cells

J Nanosci Nanotechnol. 2020 Jul 1;20(7):4414-4418. doi: 10.1166/jnn.2020.17542.

Abstract

Here, we analyzed the photovoltaic properties of the inverted organic solar cells (IOSCs) by using randomly oriented medium density ZnO nanorods (ZnO-NR) synthesized hydrothermally at low temperature conditions to avoid morphological defects. The IOSC with ZnO-NR (length < 150 nm) of medium density and random orientation showed an improvement of 83% in power conversion efficiency compared to the cell with (length < 20 nm) hydrothermally grown ZnO-NR. The optimized hydrothermal growth conditions for ZnO-NR enhanced the photovoltaic performance indicators by reducing recombination rate evidenced by the photovoltaic data. The qualitative elemental analysis of the ZnO-NR based interface was performed by the EDX, which confirmed that the as-grown ZnO-NR contain the Zn and O elements.