Piperazine as an Inexpensive and Efficient Ligand for Pd-Catalyzed Homocoupling Reactions to Synthesize Bipyridines and Their Analogues

Curr Org Synth. 2019;16(1):173-180. doi: 10.2174/1570179415666180913131905.

Abstract

Aim and objective: The synthesis of bipyridines, especially 2, 2'-bipyridines, remains challenging because the catalytic cycle can be inhibited due to coordination of bipyridine to transition metal. Thus, the development of efficient methods for the synthesis of bipyridines is highly desirable. In the present work, we presented a promising approach for preparation of bipyridines via a Pd-catalyzed reductive homocoupling reaction with simple piperazine as a ligand.

Materials and methods: Simple and inexpensive piperazine was used as a ligand for Pd-catalyzed homocoupling reaction. The combination of Pd(OAc)2 and piperazine in dimethylformamide (DMF) was observed to form an excellent catalyst and efficiently catalyzed the homocoupling of azaarenyl halides, in which DMF was used as the solvent without excess reductants although stoichiometric reductant was generally required to generate the low-oxidation-state active metal species in the catalytic cycles.

Results: In this case, good to excellent yields of bipyridines and their (hetero) aromatic analogues were obtained in the presence of 2.5 mol% of Pd(OAc)2 and 5 mol% of piperazine, using K3PO4 as a base in DMF at 140°C.

Conclusion: According to the results, piperazine as an inexpensive and efficient ligand was used in the Pd(OAc)2-catalyzed homocoupling reaction of heteroaryl and aryl halides. The coupling reaction was operationally simple and displayed good substrate compatibility.

Keywords: Pd-catalyzed; Piperazine; aryl halides; bipyridines; halide azaarenes; heteroaryl; homocoupling reaction.

Publication types

  • Research Support, Non-U.S. Gov't