Physiological and Transcriptional Response of Xanthomonas oryzae pv. oryzae to Berberine, an Emerging Chemical Control

Phytopathology. 2020 May;110(5):1027-1038. doi: 10.1094/PHYTO-09-19-0327-R. Epub 2020 Mar 13.

Abstract

Berberine, a botanical drug, has great ability to inhibit the growth of Xanthomonas oryzae pv. oryzae. However, the antibacterial mechanism of berberine against X. oryzae pv. oryzae remains poorly understood. In this study, we investigated the physiological and transcriptional response of X. oryzae pv. oryzae to berberine. When strain X. oryzae pv. oryzae GX13 was treated with berberine (10 µg/ml), the hypersensitive response in tobacco, virulence to rice, pathogen population in the rice xylem, production of extracellular polysaccharide (EPS), and activity of extracellular hydrolases decreased, but the levels of pyruvate and ATP increased. Moreover, biofilm formation was inhibited, and the cell membrane was damaged. Transcriptome sequencing analysis showed downregulated expression of gspD, gspE, and gspF, involved in the type II secretion system (T2SS); hrcC, hrcJ, hrcN, and others, involved in the type III secretion system (T3SS); gumB and gumC, associated with EPS; zapE, ftsQ, and zapA, associated with cell division; lpxH, lpxK, kdtA, and others, associated with the membrane; and pyk, pgk, and mdh, encoding pyruvate kinase, phosphoglycerate kinase, and malate dehydrogenase, respectively. Upregulated expression was observed for nuoA, nuoB, and nuoH, encoding the NADH dehydrogenase complex, and atpF, atpC, and atpB, encoding ATP synthase. An adenylate cyclase (CyaA) fusion assay showed that berberine affects type three effector protein secretion via the T3SS and reduces effector translocation in X. oryzae pv. oryzae. It is speculated that the negative growth and virulence phenotypes of berberine-treated X. oryzae pv. oryzae GX13 may involve differentially expressed genes associated with cytoarchitecture and energy metabolism, and these effects on primary cell function may further dampen virulence and result in differential expression of T3SS- and T2SS-related genes.

Keywords: Xanthomonas oryzae pv. oryzae; berberine; cytoarchitecture; physiology; transcriptome.

MeSH terms

  • Bacterial Proteins
  • Berberine*
  • Gene Expression Regulation, Bacterial
  • Oryza*
  • Plant Diseases
  • Xanthomonas*

Substances

  • Bacterial Proteins
  • Berberine

Supplementary concepts

  • Xanthomonas oryzae